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Since the birth of quantum mechanics the ground state electronic energy of the two-
electron atom has received special attention. This is because the two-electron system is
the simplest atom to include electron–electron interactions. These interactions are key to
understanding many-electron systems. This paper adds to the knowledge of two-electron
atoms by presenting closed form solutions for Hamiltonian matrix elements at arbitrary
spatial dimension, D. The basis functions are the D-dependent hydrogenic wavefunctions:
{1s2, 2p2, 3d2, 4f2}. The electron–electron repulsion integrals are solved by the Fourier inte-
gral transform.

1. Introduction

The calculation of the ground state properties of two-electron atoms has received
attention since the 1920’s [7,12]. Once the two-electron problem is fully in hand, the
knowledge gained can be applied to many-electron systems. The purpose of this paper
is to extend the knowledge of two-electron atoms by presenting dimension-dependent
electron–electron repulsion integrals in closed form. Not surprisingly, this advance has
been made possible by computers. In particular, symbolic algebra programs such as
MATHEMATICA [11] enable involved Fourier integral transforms to be done.

2. The basis set

The Schrödinger equation generalized to arbitrary spatial dimension, D, written
in atomic units and neglecting nuclear motion, is(
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Ψ = EΨ. (1)
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In the limit of infinite dimension, with appropriate dimensional scalings [9], the two-
electron atom takes the form of a rigid symmetric structure. The two electrons are
equidistant from the nucleus and have an interelectron angle a little larger than 90◦

(e.g., 95.3◦ in helium). In this limit, all excited states are degenerate, and instead
of orbitals we have a fixed geometry. As we back away from this limit, and D
takes on a large but finite value, the electrons begin to oscillate as in a symmetric
triatomic molecule. The simplest approximation takes the vibrations as harmonic and
thus separable in normal coordinates. The normal coordinates are a symmetric stretch,
an antisymmetric stretch, and a bend [5].

Within the orbital approximation, the two stretching coordinates, rS and rA, are
related to fluctuations in the hydrogenic radii, r0

1 and r0
2, by a 45◦ rotation. Thus,

the vibrational eigenstates, involving only the stretching coordinates, can be related
to conventional representations in terms of hydrogenic orbitals, involving only s or-
bitals [8].

Excited vibrational eigenstates involving the bending coordinate θ, on the other
hand, are related to conventional configurations with l1, l2 6= 0. We impose the restric-
tion of spherical symmetry so that we treat only D-dependent S-states. That is, the
orbital angular momentum quantum numbers for the electrons must be equal. Since the
orbital angular momentum is the same for each electron, the addition of one quantum
of angular vibration corresponds to n→ n+ 1 and l→ l+ 1 for each electron, where
n is the principal quantum number and l is the orbital angular momentum quantum
number. Thus, the purely angular vibrational spectrum at high-D corresponds to the
orbital configurations of 1s2, 2p2, 3d2, 4f2, 5g2, etc.

We now consider the basis functions 1s2, 2p2, 3d2 and 4f2 for arbitrary D. The
angular dependence is given by Gegenbauer polynomials in cos θ. These polynomials
are an orthogonal set with respect to the volume element, sinD−2 θ. Combining these
polynomials with D-dependent radial wavefunctions gives the first four (unnormalized)
basis functions:
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]
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where r1·r2 = (r2
1+r2

2−r2
12)/2, κ = (D−1)/2 and z is an effective nuclear charge. The

κ terms in the exponentials render the most probable radius dimension-independent.
We have only singlet states, so the spin portion of the wavefunction is [α(1)β(2)−

β(1)α(2)]/
√

2. We multiply this spinfunction by all our spatial wavefunctions.
With the basis set chosen, we move on to calculating integrals, the Hamiltonian

matrix elements.
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3. The matrix elements

Applying the Hamiltonian of equation (1) to our basis functions yields three types
of integrals:

• Integrals that involve the Laplacians and have the form
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• Integrals that involve the electron–nucleus interaction and have the form
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• Integrals that involve the electron–electron interaction and have the form

Jmn = J
(
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)
=
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.

In these integrals, mk2(r1, r2) and nl2(r1, r2) are the D-dependent two-electron 1S
basis functions in equation (2).

The first two types of integrals, Gmn and Imn, are straightfoward. This is because
the operators and the wavefunctions are all for hydrogen-like atoms. For hydrogen [8],
we have

E(D)
n = − (D − 1)2

2(D + 2n− 3)2 , (6)

in which n is the principal quantum number. By simple scaling arguments,〈
T (D)
n

〉
= −2z2E(D)

n and
〈
V (D)
n

〉
= 4zZE(D)

n . (7)

Combining equations (3), (4), (6) and (7) yields

Gnn =
z2(D − 1)2

(D + 2n− 3)2 and Inn = − 2zZ(D − 1)2

(D + 2n− 3)2 . (8)

We are only concerned with the m = n case. When m 6= n, these integrals are zero
since hydrogen-like wavefunctions are orthogonal.
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The Jmn integrals are not as straightforward. At D = 3, one popular procedure
is to separate the radial variables from the angular variables. Then, the angular integral
can be solved using the spherical harmonic expansion

1
r12

=
∞∑
l=0

+l∑
ml=−l

4π
2l + 1

rl<
rl+1
>

Y ml
l (θ1,ϕ1)Y ml∗

l (θ2,ϕ2), (9)

where r< and r> are the smaller and larger of r1 and r2, respectively. The number of
terms in equation (9) that actually need to be considered is limited to a finite number
by restrictions on the angular momentum couplings. When equation (9) is used to
solve the angular integral, the angular momentum coupling coefficients that result are
found by group theory [1,2].

The angular portion of the Jmn integrals can also be solved by group theory at
D = 4. Unfortunately, there is no similar group theoretic extension to higher dimen-
sions at the present time [13]. As a result, instead of the spherical harmonic expansion,
we use the Fourier integral transform method to evaluate the electron repulsion inte-
grals [3].

The D-dimensional Fourier transform of 1/r12 is [10]

1
r12

=
Γ[(D − 1)/2]
2Γ(1/2)πD/2

∫
dt

eit·(r1−r2)

tD−1 . (10)

Utilizing this transform, choosing t parallel to the z axis, and using only spherically
symmetric states, the specific integrals that must be solved are
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Γ[(D − 1)/2]
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The quantity CD is defined as [6]

CD =
2πD/2

Γ(D/2)
. (12)

The angular and radial integrals can be found in integral tables for m = n = 1. How-
ever, when excited states are treated, the angular integrals soon become too difficult in
this coordinate system. In order to continue to find the matrix elements analytically,
we follow Herrick and Stillinger [4] and define our new coordinate system as

u = r12, s = r2 + r1, t = r2 − r1. (13)
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The integrands can now be expanded in terms of the functions e−ks/2spuqtr, where k
is a scale factor. In this new coordinate system, the volume element is

dτ = u
(
s2 − t2

)[(
s2 − u2)(u2 − t2

)](D−3)/2
ds du dt, (14)

and all the matrix elements for the ground state energy are sums of

BD(k, p, q, r) =
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2
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2
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B
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2
,
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2

)
. (15)

In this equation, a = p+ q + r + 2D − 3 and B(b, c) = Γ(b)Γ(c)/Γ(b + c) is the beta
function.

To illustrate this method, consider the matrix element 〈2p2|1/r12|2p2〉. Switching
to the new coordinate system gives us

φ2p2(r1, r2, z,D) = exp
[
−κ2z(r1 + r2)/(κ + 1)

]
(r1 · r2)

= e−ks/2(s2 + t2 − 2u2)/4, (16)

where k = (D − 1)2z/(D + 1). With this wavefunction, the unnormalized matrix
element is

1
16

∫ ∞
0
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∫ s
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∫ u

0
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(
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(1/u)u
(
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)
×
[(
s2 − u2)(u2 − t2

)](D−3)/2
. (17)

Expanding the integrand yields a sum composed of eight BD(k, p, q, r) integrals. Each
one is solved using the beta function expression of equation (15).

To get the normalization factor, the 1/u term is dropped from equation (17).
This increases the value of q by one in equation (15). Thus, the normalization is
simply the eight BD(k, p, q, r) integrals we already have except q is increased to q+1.
This normalization factor is divided into the first result and we have solved the matrix
element.

What is required is a simple expression for the numerator, which involves the
1/u = 1/r12 operator, and for the denominator, the normalization. For the numerator,
equation (15) simplifies to

Bnum
D (k, p, q, r)

=
(D − 1)DΓ[(D − 1)/2]Γ(2D + p+ q + r − 3)(1/2)r/2[(D − 1)/2](q+r)/2

4kaΓ(D + 1)(D − 1)(q+r)/2(D/2)r/2
, (18)
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where the subscripts of quantities in parentheses or brackets indicate Pochhammer
symbols. And for the denominator,

Bden
D (k, p, q, r)

=
(D − 1/2)Γ(D/2)Γ(2D + p+ q + r − 2)(1/2)r/2(D/2)(q+r)/2

4ka−1Γ(D + 1/2)(D − 1/2)(q+r)/2(D/2)r/2
. (19)

Only four matrix elements based on these formulas are available in the literature.
They are 〈1s2|1/r12|1s2〉 [4], 〈2s2|1/r12|2s2〉, 〈2s2|1/r12|2p2〉 and 〈2p2|1/r12|2p2〉 [3].
One reason for so few results may be that when the integrand is expanded, the num-
ber of terms grows rapidly. For example, 〈4f2|1/r12|4f2〉 generates a polynomial of
94 BD(k, p, q, r) integrals. Computer programs that are able to manipulate algebraic
expressions of this length are relatively new.

For calculations using the {1s2, 2p2, 3d2, 4f2} basis set, eight more matrix ele-
ments are needed. These additional matrix elements were found to be〈

mk2
∣∣1/r12

∣∣nl2〉 = CmnQmnRmnSmnTmn,

with

Qmn =
D − 1

[(D + 2m− 3)(D + 2n− 3)]1/2
,
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m ζD+2n−2

n

[(1/2)(ζm + ζn)]2D+2m+2n−5 ,

Smn = 2m+n−3/2 Γ(D/2 +m+ n− 3/2)Γ(D +m+ n− 3/2)
Γ(D/2)Γ(D + 2m+ 2n− 3)

,

Tmn =

[
(n− 1)!

2(m− 1)!

]1/2 Γ(n−m+ 1/2)
Γ(1/2)(n −m)!

, (20)

Table 1
Cmn values.

m n Cmn

1 1 1
1 2 D−1/2

1 3 (D − 1)1/2D−1(D + 2)−1/2

1 4 (D − 1)1/2D−1/2(D + 2)−1(D + 4)−1/2

2 2 4−1(4D2 + 15D − 7)D−1(D + 1)−1

2 3 8−1(D − 1)1/2(8D2 + 55D + 27)D−3/2(D + 1)−1(D + 2)−1/2

2 4 12−1(D − 1)1/2(12D2 + 119D + 149)D−1(D + 1)−1(D + 2)−1(D + 4)−1/2

3 3 32−1(D − 1)(32D4 + 528D3 + 2665D2 + 4092D + 1755)D−2(D + 1)−1(D + 2)−1

× (D + 3)−1

3 4 32−1(D − 1)(32D4 + 728D3 + 5371D2 + 13960D + 11445)D−3/2(D + 1)−1(D + 2)−3/2

× (D + 3)−1(D + 4)−1/2

4 4 128−1(D − 1)(128D6 + 4896D5 + 72236D4 + 517965D3 + 1877495D2 + 3280323D
+ 2185965)D−1(D + 1)−1(D + 2)−2(D + 3)−1(D + 4)−1(D + 5)−1
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where ζm = [(D+ 2n− 3)/(D+ 2m− 3)]1/2zm and ζn = [(D+ 2m− 3)/(D+ 2n−
3)]1/2zn. Recalling equations (2), zm and zn are the effective nuclear charges. The
Cmn values are given in table 1.
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